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Abstract— This paper outlines the mathematical foundation
for a general method of anomaly detection from time-
correlated sensor data. This method is a component of
BEAM [1], described elsewhere, but as an individual
algorithm is capable of fault detection and partial
classification. The method is applicable to a broad class of
problems and is designed to respond to any departure from
normal operation, including faults or events that lie outside
the training envelope. We will also consider training of the
detector and interface to a larger diagnostic system. Lastly
we will examine a brief illustration taken from aircraft
testing that demonstrates the power and versatility of this
method.
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1. INTRODUCTION

Aircraft diagnostics is an old subject but one with obvious
room for improvement. Traditional diagnostic approaches
are hindered by a fundamental limitation; namely, the class
of faults a system can experience is never fully understood
during the design phase. Typically the space of fault
coverage is no better than 50-70% by first flight at best. This
is complicated by system improvements, multiple
configurations and modular design, and part replacement
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during routine maintenance. Such is true of many systems
besides aircraft, and work here is equally applicable to and
mirrors efforts for autonomous space vehicles and similar
systems.

Modern aircraft proposals are increasingly concerned with
total cost, and the aircraft system’s ability to affordably meet
the requirements of 1is customers. Reliability and
sustainability is central to cost, and so the issue of
diagnostics is key. In order to directly address this problem,
Boeing has assembled a team to research a component of the
vehicle health management system to improve diagnostics
over time. This is the Anomaly System, where we have
defined an anomaly simply as “off-nominal system
behavior,” of which the broader class of faults can be
considered a subset. The anomaly system is dedicated to
observing system performance, identifying characterizing
anomalous episodes, and returning this information to the
ground. This system defines a rigorous, repeatable, and
sustainable process to improve the diagnostics over the
course of the aircraft’s operational lifetime.

The process of identifying anomalies, or to be more specific,
Novelty, is not at all unusual among the spacecraft
community. Spacecraft tend to be complex and unique
devices, often facing new environments and phenomena that
are poorly understood. In order to safely monitor and
control a spacecraft, one must be able to sense new
behaviors and understand or correct them. JPL has a major
interest in robotic space exploration and has sought
mathematical means to aid spacecraft controllers. One new
system intended for this duty is BEAM (Beacon-based
Exception Analysis for Multimissions) [1], which is an end-
to-end method of data analysis intended for real-time fault
detection and characterization. It provides a generic system
analysis capability for potential application to deep space
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probes and other highly automated systems. JPL has worked
to support the Boeing team in order to leverage spacecraft
experience against similar aircraft challenges.

In this paper, we will describe the architecture and operating
theory of a purely signal-based anomaly detection method
and its application to a typical aircraft sysiem. The
component we will focus on is referred to as the System
Invariant Estimator (SIE) component of BEAM. It receives
multiple time-correlated signals as input, and compares their
cross-signal behavior against a fixed library of invariants.
The library is constructed during the training process, which
is itself data-driven using the same time-correlated signals.
The SIE returns the following quantities, which will be
explained in detail:

Mode-specific coherence matrix

Event detection

Comparative anomaly detection

Anomaly isolation to specific signals
Quantitative measure of off-nominal behavior

This method seems simplistic and it can be improved
through a variety of methods, such as integration with
model-based and symbolic reasoning components as in the
full BEAM formulation [1], or through fusion with other
detection methods as in [2]. Nonetheless, the detector as
presented is broadly applicable, easily trainable, exhibits
excellent false-alarm characteristics, and performs a reliable
first stage of fault isolation, even in response to novel
conditions. This will be clearly shown in the example case.

2. CROSS-SIGNAL MOTIVATION

The process of anomaly detection described here is
motivated by a simple reality of aircraft systems. Modern
aircraft provide a wealth of sensor data coming from
performance sensors — i.e. pressures, temperatures, RPM
measurements, etc. — a list that is gradually evolving to
include advanced sensors, high-frequency signals, and
“virtual” sensors or preprocessed signals. Furthermore,
weight, space, and power considerations discourage
additional diagnostic-only sensors. Instead, the available
data must be studied more carefully than in the past.

Because quantitative information is so readily available,
approaches grounded in signal processing are likely to be
effective. The method described here has two distinct
advantages. The first is its broad range of applicability --
the module described here has been used to successfully fuse
sensor and computed data of radically different types, on
numerous systems, without detailed system knowledge and
with minimal training. The second is its ability to detect,
and with few exceptions correctly resolve, faults for which
the detector has not been trained. This flexibility is of prime
importance in systems with low temporal margins and those
with complex environmental interaction.

Let us approach the problem from a mathematical
standpoint. Consider a continuously valued signal from an
electromechanical system, sampled uniformly. Provided this
signal is deterministic, it can be expressed as a time-varying
function:

S, = f{S.(t—arh {E@)}, &) (1)

In the above expression, we have identified the signal as a
function of itself and other signals, as expressed by {S;(t)},
and of the environment, which may contain any number of
relevant parameters {E(t)}. There is also a noise term £(t)
included to reflect uncertainties, in particular actual sensor
noise that accompanies most signals in practice.

The process of identifying faults in a particular signal is
identical to that of analyzing the function f{#). Where this
relation remains the same, i.e. follows the original
assumptions, we can conclude that no physical change has
occurred for that signal, and therefore the signal is nominal.
Such is the approach taken by model-based reasoning
schemes.

However, the function f for each signal is likely to be
extremely complex and nonlinear. The environmental
variables may be unknown and unmeasurable. Lastly, the
specific interaction between signals may also be unknown,
for instance in the case of thermal connectivity within a
system. The sheer complexity of the problem precludes
model-based techniques in many cases. For this reason, it is
more efficient and more generally applicable to study
invariant features of the signals rather than the full-blown
problem.

One excellent candidate feature for study is cross-correlation
between signals. By studying this computed measurement
rather than signals individually, we are reducing the
dependence on external factors (i.e. environmental
variables) and thus simplifying the scope of the problem.

Cross-correlative relationships between signals, where they
exist, remain constant in many cases for a given mode of
system operation. The impact of the operating environment,
since we are dealing with time-correlated signals, applies to
all signals and thus can be minimized. This approach is
essentially the same as decoupling the expression above, and
choosing to study only the simpler signal-to-signal
relationships, as follows:

S, = f(Si(e-dr))o s(E@Noel) @

This hypothesis is not strictly true, but it tends to be a good
approximation for most realistic systems. In most cases,
relationships between signals that represent measured
quantities are readily apparent. The environmental



contribution can be considered an external input to the
system as a whole rather than being particular to each signal.
The sensor itself is the source of most of the noise, and it too
can be separated.

We must remember to consider the operating mode of the
system, as hinted at above. For the purpose of this
discussion, a mode implies a particular set of relational
equations that govern each signal. In other words, the
operating physics of the system can differ between modes
but is assumed to be constant within a mode. These modes
are ordinarily a direct match to the observable state of the
system -~ i.e. inactive, startup, steady-state, etc. Mode
differs from the external environment in that it is a measure
of state rather than an input to the system’s behavior.

Provided we can correctly account for operating mode, we
then have a much simplified set of relations to study, namely
those between pairs of signals, or in the more general sense
each signal versus the larger system. Faults in the system
can be expected to manifest themselves as departures from
the expected relationships. For this reason, the study of
correlations between the signals is singularly useful as a
generic strategy.

3. STATE ESTIMATION AND ANOMALY DETECTION

Two common measures of second-order «cross-signal
statistics are the Covariance and the Coefficient of Linear
Correlation. Covariance is a good measure of similar
behavior between arbitrary signals, but it suffers from a
number of difficulties. One such problem is that a
covariance matrix will be dominated by the most active
signals, viz. those with the greatest variance. In order to
avoid this, covariance is typically normalized by the relative
variances of the signals, as in the Correlation Coefficient.
However, this is often overly simplistic and leads to the
inverse problem, as a correlation matrix tends to become ill-
conditioned in the presence of signals with relatively low
variances.

Returning to the original goal, we are interested in
comparing signals. This should take into account both the
covariance and the relative variances of the signals. This
leads us to the expression for the coherence coefficient given
below:

lCov(S,., Sj]

6y = Max(Var(S,. ) Var(Sj ))

3)
We have used the familiar definitions:

Cov(Si’Sj)z—}J-(Si_‘i)(Sj—gj)dt “)
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Var(S,.)=;J.(S>—S.)2dt 5)

The maximum variance is used in the denominator to
guarantee a coherence value normalized to [-1, 1].
Furthermore, the absolute value is taken because the sign of
the relation is of no importance for arbitrary signals, only the
existence or nonexistence of a causal connection. A
coherence value close to O implies no relationship between
signals, whereas a value approaching 1 indicates a very
strong relationship.

Given n data streams, this calculation defines an n x n matrix
where each entry represents a degree of causal connectivity.
Where relationships between signals are fixed, i.e. during a
single mode of system operation, the coherence coefficient
between those two signals will remain constant within the
bounds of statistical uncertainty. Provided the coherence
coefficient converges (see Section 4), this calculation is
repeatable, and so it can be used as a basis for comparison
between training and run-time data.

Admittedly the above assertions are too strict for a real-
world example. Systems may indeed contain signals with
fluctuating or drifting relationships during nominal
operation, or the appearance of such due to nonlinear
relationships. Additionally, the requirement to maintain a
countable number of modes may force us to simplify the
system state model, to the detriment of repeatability. We
will mitigate these concerns, but for now let us press on.

Having understood that cross-channel measurements are an
effective method of signal analysis, we next explore how to
best apply the calculation above. The first question to ask is
how the data should be gathered. From the discussion
above, it is clear that we must avoid applying this operator
to mixed-mode data. Such data represents a combination of
two separate sets of underlying equations for the signals,
thus mixed-mode correlations are not necessarily repeatable.
Most other cross-signal applications avoid this issue through
one of the following methods:

e Compute only correlations having a fixed, mode-
independent relationship.

This method is effective in reliable fault detectors,
however the system coverage is typically very limited.
This approach is restricted to well-understood signal
interactions and is not generalizable. (However, see
Section 4, where we attempt to redress this philosophy.)

e  Window the data until we can assume quasi-steady-
state operation.

This procedure also carries significant inherent
limitations. Because the computation (of coherence
coefficient or any other method) is statistical in nature,



selection of a fixed window size places a hard limit on
latency and upon confidence of detection. This also
does not directly address the core problem — we still do
not have pure single-mode operation.

e Window the computation according to external
state information, such as commands.

This is the best approach, and it is used in the full
formulation of BEAM. However, it too has limits.
External state information may not be available.
Additionally, there may not be a perfect alignment
between discrete “operating modes” and observable
shifts in the system — it may not be one-to-one.

Our solution to the mixed-mode problem is based upon
mathematical properties of the computation. Consider a pair
of signals with a fixed underlying linear relationship, subject
to Gaussian (or any other zero-mean) random noise. The
coherence calculation defined in (3) will converge to a fixed
value, according to the following relationship:

é“,~,~(t)—§,-,<(t—1)~i2 ©)

t

This follows from the squared terms in the denominator of
(3). The exact rate of convergence depends on the relative
contribution from signal linear and noise components as well
as the specific character of signal noise. However, in
practice, it is much easier to determine the relationship
empirically from training data.

Given the convergence relationship above, we can define a
data test in order to assure single-mode computation. By
adopting this approach, we can successfully separate steady-
state operation from transitions. This means:

e Transition detection is available for comparison to
expected system behavior.

A “transition” in this case is a switch from one mode to
another. Most of these are predictable and nominal.
On the other hand, a broad class of system faults can be
considered transitions, particularly those involving
sudden electrical failure or miscommand scenarios.
Unexpected events in the system immediately merit
further analysis.

e  Calculated coherence uses the maximum amount of
data available to make its decisions, which
optimizes sensitivity and confidence.

Use of the convergence rate establishes a time-varying
estimate of confidence in the calculation, which is
transparent to the final output of the detector. The time-
variance also applies to the values of the computed
coherence, which we will study in further detail.

The quantity p(t) = §y(t) — §i(t — 1) is referred to as the
coherence stability. This single parameter is a good
indicator of steady-state behavior.

One observation regarding the coherence stability is that its
convergence rate is quite fast. This allows us to make
confident decisions regarding mode ftransitions with
relatively little data to study. This also lends credibility to
more complex and subtle fault detection using a coherence-
based strategy.

Next we will use a similar strategy to differentiate between
nominal and anomalous data, where the fault manifests itself
as a drift rather than a transition. Such a fault case is more
physically interesting than a sudden transition, since we are
concerned about a lasting effect upon the system rather than
an instantaneous data error. Suppose we have a current {j;(t)
estimate that we are comparing to a precomputed estimate
called {;. As we accumulate more data, the estimate is
expected to converge at the following rate:

15|~ \E ™

This relationship determines the accuracy of the
calculation’s raw value, which is representative of the
underlying physical relationship between the two signals. It
is conceptually similar to the error in estimated mean for a
statistical sampling process. We can use this relationship to
detect a shift in the equations, much in the manner that
events are detected above.

The computed quantity {(t) — {p is referred to as the
coherence deviation. When compared with the base
convergence rate, it is a measurement of confidence that the
coherence relationship is repeating its previous (nominal)
profile. Between detected mode transitions, this relationship
allows us to optimally distinguish between nominal and
anomalous conditions.  Violation of this convergence
relationship indicates a shift in the underlying properties of
the data, which signifies the presence of an anomaly in the
general sense.

Note that the convergence rate of this relationship is
considerably slower, though still fast enough to be practical.
Because of this it is particularly valuable to adapt a variable-
windowing scheme where data is automatically segmented at
mode boundaries.

4. IMPLEMENTATION

In the previous section we defined a method of generic
cross-signal computation and identified properties that



facilitate decisions about the data. In this section we will
examine how to best apply these properties to a realistic
system.

The convergence properties above are written for each
individual signal pair. In order to apply this approach in
general to a system with N signals, we have O(N*) signal
pairs to process. At first glance, the approach does not
appear to lend itself to scaling. For this reason, most cross-
signal approaches focus on preselected elements of the
matrix, which cannot be done without considerable system
knowledge or examples of anomalous data from which to
train.

In general, we may not know a priori which signal pairs are
significant. Additionally, there are likely to be numerous
interactions for each signal, which may vary depending on
the mode of operation. Only in rare cases will individual
elements of the matrix be the sole points of interest.
Typically we are concerned with signal behavior versus the
entire system, which corresponds to an entire row of the
coherence matrix.

Because we are more concerned with the overall system
performance, we should instead consider a single global
measure based on the entire matrix. Thls requires some sort
of matrix norm.. :

Many matrix norms exist, but we shall use the following,
where M is an arbitrary N-by-N matrix:

1
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The norm chosen here differs from the simple matrix
average in one detail, namely the absolute value and its
placement.  An absolute value is used because the
convergence test is only concerned with the magnitude of
differences, rather than their sign. (An exception to this:
Following the detection of an anomaly, for purposes of
identification the sign can be important, as faults that cause
an increase in coherence are typically more physicaily
complex and more interesting.) The choice to average row
totals rather than each individual element is motivated by the
inherent structure of the coherence matrix, specifically the
fact that each row represents a single signal’s total
contribution. By averaging the rows prior to their
summation we hope to counteract noise present in the
calculation, whereas differences due to a significant shift are
likely to be of the same sign.

We can substitute the norm into the convergence
relationships (6) and (7) without changing their character:

Je,0)-¢,6-1) - ©
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The stability and deviation on the left are now indicative of
the entire matrix, i.e. we are now tracking only two
parameters, regardless of system size. This produces a
tradeoff between individual pair sensitivity and false-alarm
reduction, while at the same time greatly reducing
computational cost.

A further adaptation of this approach is to consider separate
weighting of different pairs. It is clear that some signal pair
relationships will be highly repeatable while others will be
pseudorandom. Additionally, we have adopted the concept
of multiple modes to handle different relationships at
different phases of system operation. This can become an
unbounded problem, and a mechanism is needed to
guarantee a small number of modes.

Let us introduce a weighting matrix Wj; into the convergence
relationships above:

Ile;li(t)—ng.y(t_l)” ~;1; (1)

-W,¢| ~\E (12

The matrix W;; is a companion to the training matrix ¢, and
is computed as part of the training cycle. For a general
application, i.e. an application for which. no signal
relationships are known or suspected, it is computed by
normalizing each signal-pair coherence by the observed
variance in that coherence. This normalization matrix, along
with the model coherence ¢, and the uncertainty in the
training set, can be later combined with other
coherence/normalization pairs in order to combine modes or
enhance training data results with new data.

[,¢,0)

Once a fault has been detected, the next step is to isolate the
responsible signals. This is done by studying the difference
matrix:

Dij =VVij(§ij(t)_§o) (13)

Given an anomaly on one signal, we expect to see the
correlation between this signal and all others diminish
compared to the expected values. There may be stronger
shifts between some signals and others, but in general the
coherence values will decrease. Visually this leads to a
characteristic “cross-hair” appearance on the rendered
difference matrix.



The total deviation for each signal is computed by summing
the coherence difference (absolute values) over each row of
the matrix. Ranking of these deviations determines the most
likely contributors to the faults. This channel implication is
passed to interpretive elements of BEAM and to single-
signal analysis modules.

In general an anomaly will manifest as a decrease in
coherence between signals. However, there are rare cases
where coherency will increase. Typically this is not system-
wide but is isolated to a few specific pairs. Such an increase
in coherency is indicative of a new feedback relationship
occurring in the system, and it must be given special
attention.

These special cases, physically, define previously unknown
modes of the system. This mode may be nominal or faulty.
In the former case, such detection implies that the training
data used to tune the detector does not adequately cover the
operations space, and must be expanded. In the latter case,
knowledge of what specific signals or pairs are anomalous
can directly lead to better understanding of the problem,
particularly in cases where causal or physical models are
available to the diagnostic engine.

5. BASIC ARCHITECTURE

Figure 1 displays the computational embodiment of this
process. This architecture is an exploded view of the SIE
box contained in the overall BEAM architecture, found in
[1]. In the case of this experiment, this architecture stands
alone, which has some minor consequences on the
architecture as described below.

Each sample of time-correlated, stationarized data is passed
to the Incremental Coherence Estimator, where equation (3)
is updated for each signal pair. The coherence stability is

computed over the matrix, and is checked against
relationship (11) in the Convergence Rate Test. If this test
fails, the coherence estimate is reset and a new data window
is begun.

A typical coherence matrix is presented in Figure 2. The
colormap shows values of the matrix from 0 (dark blue) to 1
(red) for each signal pair, with different signal numbers on
the X and Y axes. Notice that, as expected, the matrix is
symmetric, and there is a stripe of 1’s along the diagonal.
Diagonal entries represent autocoherences, which are always
1. An exception to this: In cases where a signal has no
variance, the coherence value is uniquely zero except on the
diagonal. However, we have adopted the convention that
for a truly constant signal, we will retain a zero on the
diagonal until its variance is positive. Thus diagonal entries
represent signals that are temporarily constant and therefore
invalid for this computation.

After the test above, we are guaranteed a coherence estimate
free of mixed-mode data. The estimate is compared against
the expected coherence supplied by-the Coherence Library,
as selected by the symbolic model and command data. The
match is checked against relation (12).

If we have a mismatch that compares favorably to an
abnormal library coherence, we have a known fault, which
will be flagged according to the fault number and passed to
the interpreter. If we cannot find a suitable match, as is
more frequently the case, the differenced coherence,
computed by equation (13), is examined to extract the key
actor signals and pairs. A typical difference matrix is
displayed in Figure 3. We have adopted the convention that
positive values on the difference matrix indicate a loss in
coherence relative to the training data, and negative values
indicate an increase in coherence.

At the end of this operation, we will have successfully
identified normal versus anomalous operation of the system
as a whole. For those cases where anomalous conditions are

Mode Switch
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ata P—c@—g
+ g Convergence
Rate Test Known Bad
oherence T Log Ewvent
Memory | I Titning
Reset Transition Detected

Figure 1: SIE Block Architecture
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Figure 2: Sample Coherence Matrix

detected, we have isolated the effect to a known case or to
the key measurements that led us to that conclusion. This
has, in essence, digitized the problem into terms that an
automatic interpreter can understand.

‘For this particular stand-alone application, and for purposes
of strict anomaly detection, we are lacking three features
usually built into the detector. We have made some changes
to the usual architecture to accommodate them. These are:

e  Stationarization of sensor data.

As mentioned in section 3., it is unlikely but possible that
the coherence coefficient may not converge for
nonstationary data. Because we are applying this method
blindly, we rely upon an approximate stationarization
method, namely differencing of sensor values against their
previous values. In other words, the detector is applied to
the changes from sample to sample of each individual
sensor. This has the practical effect of guaranteeing a zero
mean for the incoming signals. In ordinary practice, a more
sophisticated stationarization can be constructed given some
knowledge of the incoming signals.

e Mode selection by command or state information.

For this example, we have no command or state information
available. Thus we cannot preselect a specific mode-
indexed training set for comparison. For this experiment,
we will compare current results against the entire nominal
training set, using the closest match for comparison. The
practical effect of this is to desensitize the detector.
However, should it remain effective, we have further
demonstrated its broad applicability and sensitivity.

e  Faulted training data.
For this example, we will only train with nominal data.

Therefore, faulted data will be “anomalous,” i.e. novel to the
detector. This test will examine the detector’s ability to
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Figure 3: Sample Difference Matrix

sense true anomalies as well as its ability to characterize
events completely outside the training envelope.

6. HYDRAULIC SYSTEM TEST CASE

To illustrate this approach, we will consider processing
results on data acquired from an aircraft hydraulic system.
The system in question is fairly typical of aircraft systems, in
that we have a small number of continuously valued signals
uniformly sampled. Specifically, we have eight sensors, all
of them pressure sensors, sampled at 200 Hz. The sensors
reflect pressure sampled at different points in the hydraulic
system.

To complicate matters, we do not have any .discrete ‘state
information available. The hydraulic system-does not have
any directly definable “modes,” either.. . It is an
accommodating system that is indirectly affected by the
amount of control stick activity directed by the pilot. We do
not have any visibility into these stick commands aside from
a rough classification given to individual datasets — data is
labeled as representing “Light,” “Moderate,” “Heavy,” or
“Violent” stick activity.

The data provided for this experiment covers eleven
different observations, which vary from approximately 10 to
20 seconds in length (2000 to 4000 samples). Nine of these
indicate nominal system operation, and two indicate failures;
this information is provided prior to the test.

Failure in the hydraulic system was induced by attenuating
the accumulators. Because this is an accommodating
system, it is difficult to see the effects of this change. One
run of failure data was provided with ‘“Moderate” stick
activity, and one with “Violent” stick activity.

Example datasets are displayed in Figures 4 and 5. These
are the nominal and faulty “Violent” sets. All eight signals
are plotted on the same axis.
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Figure 4: Nominal Hydraulic Data, Violent Stick Activity

Raw Deta (Anomaious): Noz7-23.17
T T T

L
o 00 000 150 2000 20
Sanpies o 200 Hz

Figure 5: Anomalous Data, Violent Stick Activity
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Figure 7: Stationarized Data from Figure 6

Figure 6 is an example of “Light” stick activity with nominal
performance. Axes and signals are the same.

In our opinion, the data fail the all-important “eyeball test” —
that is to say, it is not obvious to an untrained observer that
there are visible features in the data to distinguish nominal
from anomalous conditions. It is also not clear how the
influence from control stick actuation complicates the
problem, but there appears to be some effect.

Given this and only this information, we must prove the
performance of the detector. This means we must answer
the following questions:

* Can we distinguish nominal from anomalous data
Can this distinction be made without training on
anomalous data

e  What is the sensitivity vs. false-alarm performance

e How much nominal data is required to train the
detector

e How many “modes” are required for good false-
alarm performance

e s there a distinction between “Light” and “Severe”
stick activity in nominal or anomalous data

e How accurately can the detector isolate this
anomaly

The detector was trained using a subset of the available
nominal data, permitting some nominal data to be withheld
for false-alarm testing. The nominal data was rotated and
retried to ensure that no single nominal datafile was essential
for claimed false-alarm performance. In addition, the
detector, once trained, was tested on both anomalous files.
We are not only interested in the false-alarm performance
(though this is of key importance), but also its sensitivity.

7. DETECTION RESULTS

Because we are considering the SIE as an isolated
component, we must begin by stationarizing the data as
described in Section 5. This was done as part of the
detector, by storing previous sensor values and subtracting
them from incoming values. A plot of the effect on this data
is given in Figure 7. This represents the same data shown in
Figure 6 after this step. In practical use, this step would
create a latency of detection of one sample, which is deemed
to be acceptable.

The detector is trained by running it in a non-comparative
mode. This means the coherences are computed and mode
boundaries are sensed, and one “training” coherence is
stored for each segment of the data. Along with the training
coherence, a weighting matrix is computed based upon its
repeatability. The training is repeated for each file, after
which training results can be merged or left alone.
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Figure 8: Raw Training Results (Twelve Sets) From Nominal, Light Stick Activity Data

A sample raw, uncombined training result is graphed in
Figure 8. This is the result from the nominal file graphed in
Figure 6, which contains twelve separate segments. For
each segment, we have a pair of 8x8 matrices, which
represent the training matrix and weighting matrix pair for
each segment. Coherence training matrices are the left
member of each pair, followed by the corresponding
weighting matrix. To describe this result, each segment is
characterized by a very diagonal coherence, as indicated by
the red values close to 1 on the diagonal, and blue values
close to O otherwise, and a weighting matrix that is
uniformly close to 1. Values approaching 1 in the weighting
matrix indicate stability in the corresponding training
matrices, which is characteristic of a well-tuned detector.
Very low values typically result when the convergence
relationships are poorly tuned, which results in frequent
mixed-mode segmentation.

There is one additional bit of information not presented in
this graph, namely the confidence in each, as determined by
the length in samples of each segment. The last-segment, in
particular, is shorter than the others (the file simply runs out
of data), and therefore its confidence is quite low; this
matrix will not be useful for the computation and may be
discarded. The other eleven segments show good
repeatability.

Note that the training data shows relatively low. coherence
values throughout. This is typical of poorly correlated

perhaps underinstrumented, it is not implausible that under
normal operating conditions, there is little propagation of
minor effects from one sensor to another.

Let us begin our experiment with a consideration of
detection rates. One of the outputs of the detector is a
simple, Boolean flag, updated at every sample, that indicates
the presence or absence of anomaly. We should make clear
that this flag is only set if we can confirm the presence of
anomaly at that particular sample. There is no “latching,”
either for a momentary dip below the convergence threshold
or a reset of the calculation at a window boundary. Latching
of some sort would probably be implemented in a fielded
system, but we will be very clear about the detector
performance in this experiment.

Using any one nominal set as training data did not yield
perfect false-alarm characteristics, but performance was
impressive. An example result is shown in Table 1. The
training was rotated through each of the files, but for this
specific example, we have used the data of Figure 8 to train
and applied the detector to all other files, nominal and
anomalous. We refer to the files as nominal or anomalous,
and according to stick activity.

In other words, both anomalous files are detected, and the
flag is convincingly set for both. However, we have a slight
false-alarm reading with the last nominal file. This is
doubtless because we have trained with “Light” stick

systems. Given that the hydraulic system is adaptive and activity, and the false alarm occurs during “Violent” activity.
Table 1: False-Alarm and Anomaly Detection Results for Detector Trained on One Nominal File

File Type (Trained) Light Moderate Moderate Moderate Heavy
Light Nominal Nominal Nominal Nominal Nominal
Nominal

Anomaly 0 0 0 0 0 0

Counter

File Type Heavy Violent Violent Moderate Violent
Nominal Nominal Nominal Anomalous Anomalous

Anomaly 0 0 13 /2817 3188 /3473 2200/ 2424

Counter

Table 2: False-Alarm and Anomaly Detection Results for Detector Trained on Two Nominal Files

File Type (Trained) Light (Trained) Moderate Moderate Heavy
Light Nominal Moderate Nominal Nominal Nominal
Nominal Nominal

Anomaly 0 0 0 0 0 0

Counter

File Type Heavy Violent Violent Moderate Violent
Nominal Nominal Nominal Anomalous Anomalous

Anomaly 0 0 0 2970/ 3473 2044 /2424

Counter




The solution is to add another mode corresponding to
increased stick activity, giving us a total of two ~ one for
“Light Stick” and one for “Significant Stick” nominal
behavior.

Using training data from any two files, excepting only both
“Light” activity files, we are able to achieve a zero false
alarm rate for this test. A typical example, using “Light”
and “Moderate” stick activity for training, is given in Table
2 above. Selection of different nominal files to train the

algorithm produced very similar results to those shown in
Tables 1 and 2.

Based on these results, we have answered all but one of the
questions facing the detector:

e It is capable of distinguishing nominal and
anomalous behavior.

e This distinction can be made without training on
the anomalous data.

e  Sensitivity vs. False-Alarm is perfect on a file-by-
file basis for this data set.

e Two files of nominal data, comprising ~4000
samples, are sufficient to fully train the detector.

e Only two modes are necessary for this level of
performance.

e There is a minor distinction between different
levels of stick activity, usually too small to resolve.

The question that remains concerns isolation of the anomaly.
Thus far we have only considered the detection across the
entire system. We have not studied the individual signal
implications following the detection.

The signal-specific results are output from the detector at
every sample when an anomaly is indicated. This result is a
number, again normalized between O and 1, indicating the
distance a particular signal is from the training data. In
general, a value of 0.1 is a large departure, with 0.5 being
the practical maximum. Figure 9 is an example of a nominal
file result forced to output at every sample for purposes of
comparison. There is a slight bump present, which does not
indicate an anomaly because it immediately follows a
segmentation boundary, and confidence is correspondingly
low.

Figures 10 and 11 show the results using the training data of
Table 2, applied to both anomaly files. The horizontal axis
is time, in samples, while the vertical axis counts the signals
from 1 to 8. The colormap indicates the distance for each
signal at each sample.

Figure 11: Signal Distances, Anomalous Heavy Activity

Two things are clear from the plots above. First, the
anomaly detection is consistent and very strong. Second, the
anomaly affects nearly the entire system. Such a result is
expected given the connected and accommodative nature of
the hydraulic system. There is an exception, though. The
seventh signal is almost completely immune to the anomaly.
After questioning the system experts, this result was
explained by the fact that the seventh signal represents a
slightly different type of measurement, in this case pressure
at the APU, whereas the other measurements are very
similar to each other, having been taken at similar points



downstream in the system. In other words, the localization
of the anomaly is plausible, even in this pathological case
where nearly every sensor is affected and the process begins
to saturate.

In a production environment, results such as these may or
may not be of immediate use to system operators. Surely
such displays are too sophisticated for a pilot, but they might
provide additional insight to a system expert seeking to
upgrade the diagnostic system in response to a newfound
anomaly, as in [3]. Because the results are quantitative,
repeatable, and tied directly to the data, they can be sent to
autonomous components for further processing, as in [1] and
[2], or they may be directly analyzed by human experts.

8. CONCLUSION

We have presented here a purely signal-based method of
fault and anomaly detection suitable for use with nearly any
instrumented system. Its flexibility allows it to be trained
and maintained with relative ease, and it exhibits excellent
characteristics with respect to sensitivity and false-alarm
rates. It can be applied alone, as in the aircraft hydraulic
example presented here, or as part of a larger and more
sophisticated monitoring system.

Advanced processing such as this can be conducted on-
board most aerospace systems, as processor resources and
available sensors are usually more than adequate to support
such analysis. Benefits of such processing translate directly
into cost savings in terms of safety, maintenance, reduction
of CND (CanNot Duplicate) conditions, and readiness.
Furthermore, extracting knowledge from the raw sensor data
is essential as the system becomes more and more
autonomous.

In order to make the greatest use of available sensor data,
processing should take place close to the source — subsystem
by subsystem, performed on-board as much as possible. The
benefits of advanced health management can only be fully
realized if a comprehensive system in put into motion, and
considerations of novelty and upgrading the diagnostics
themselves are planned well in advance.
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